PROBLEMS OF CREATING SCIENTIFIC IDEAS ABOUT WORLD DEVELOPMENT

Proceedings of the III International Scientific and Practical Conference

Ottawa, Canada
October $03-06,2023$

CHOICE OF A MACHINE-BUILDING ENTERPRISE CLIENT WITH LIMITED PRODUCTION CAPACITIES

Pistunov Ihor
Doctor of Science, Professor
Dnipro, National Technical University
"Dniprov Polytechnic"

The limitation of production resources with a significant portfolio of orders forces manufacturers to choose the most profitable among all orders.

Let's consider the solution of this problem for a machine-building enterprise that manufactures large-sized structures.

For this, statistics were collected from 80 orders that were previously fulfilled by this enterprise on nine factors, indicating their conventional designations:

1) client - the name of the legal client encrypted with a number according to the value of the client for the enterprise $\left(x_{1}\right)$;
2) production terms - the period of time necessary for the complete completion of the order is expressed in calendar days $\left(x_{2}\right)$;
3) the cost of materials - the cost of materials needed to fulfill the order $\left(x_{3}\right)$;
4) basic W/P - wages paid to workers for order fulfillment $\left(x_{4}\right)$;
5) general production costs - all types of costs that occur during production, for example, costs of production management, depreciation of intangible assets, costs of maintenance of the production process, costs of labor protection, etc. (but EXCEPT costs of maintenance and operation of equipment and administrative costs) (x_{5});
6) expenses for the maintenance and operation of the equipment - expenses for maintaining the equipment in working condition and technical care $\left(x_{6}\right)$;
7) administrative expenses are expenses for communication services (postal, telegraphic, telephone, fax, etc.), for depreciation of intangible assets of general economic purpose and other (x_{7});
8) sales expenses - these are expenses for packaging materials and repair of containers, for delivery, for sales department employees' business trips, etc. (x_{8});
9) planned profit - the amount of profit that will be received after the execution of the order (y).

The names of the customers of the engineering company are numbered from less important to more important in order of increasing importance from 1 to 14 .

All data in monetary terms are adjusted to take into account the current galloping inflation. A fragment of the results is given in table. 1.

Table 1
Input factors

Client	Deadlines production, days	Cost of materials, UAH	Main S/P, UAH	General production, UAH	Maintenanc e expenses and equipment operation, UAH	Administrati ve expenses, UAH	Selling expenses, UAH	Planned profit, UAH	The total cost, UAH
1	60	12000,71	5464,07	3835,95	2397,47	2234,44	1917,98	3196,63	31047,25
1	70	64787,85	29077,03	20413,02	12758,14	11890,58	10206,51	25516,27	174649,40
3	30	57143,485	7862,69	3324,28	798,07	2405,21	1616,14	11776,04	84925,90
4	50	573987,59	86859,86	35559,34	8992,09	23739,26	16875,17	127508,29	873521,60
9	20	6052,925	900,45	357,58	92,65	253,94	183,29	1488,68	9329,50
9	30	45991,05	8581,7	2868,28	806,57	2404,71	1474,14	10724,55	72851,00
9	20	6708,685	1022,49	413,00	110,75	321,25	210,50	1768,24	10554,90
9	30	21098,24	3722,96	1264,58	318,90	945,69	735,79	5294,44	33380,60
10	30	15314,34	2375,36	906,74	210,44	683,31	509,87	3830,54	23830,60
14	55	84040,95	12626,3	5100,92	1430,23	4355,69	2772,46	20868,45	131195,00
13	20	7233,81	963,74	436,90	108,47	333,42	214,95	1398,11	10689,40

Taking into account the fact that these data refer to different types of orders, we consider it necessary to divide all orders into homogeneous groups using the method of cluster analysis[1] by the STATISTICA 12 program.

The system suggested 6 clusters as the best option. The clustering error is 12.4%. For this type of clustering, an error size of less than 20% is acceptable. In the table 2 shows the content of the clusters.

The task of classification, that is, assigning new orders to a certain cluster, is performed by the method of creating linear separable functions [1].

The following technique was used to construct linear separable functions:

1) a column of an additional variable was created, which was called the cluster separation function $\left(\mathrm{Y}^{*}\right)$;
2) when calculating the linear regression for the i-th cluster, the value of Y^{*} was assigned the number 1000 only for the data of this cluster (Table 3);
3) for other clusters $Y^{*}=0$;
4) after that, linear regression dependences of Y^{*} on the input factors were constructed. An example is given in table 3.5;
5) repeat the previous procedure for all clusters, thus obtaining 5 dependencies;
6) checking the quality of cluster separation for these functions is performed according to the table of calculated Y^{*} values. If the value of Y^{*} for the corresponding cluster exceeds the value of Y^{*} for the other clusters, then the function is acceptable.

Table 2.
List of orders of each cluster
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { Cluster } \\
\text { number }\end{array} & \text { Order number } \\
\hline 1 & 1 ; 2 ; 3 \\
\hline 2 & 7 ; 15 ; 17 ; 20 \\
\hline 3 & \begin{array}{c}32 ; 33 ; 34 ; 35 ; 36 ; 37 ; 38 ; 39 ; 40 ; 41 ; 42 ; 43 ; 44 ; 45 ; 46 ; 47 ; 48 ; 49 ; 50 ; \\
51 ; 52 ; 53 ; 54 ; 55 ; 56 ; 57 ; 58 ; 59 ; 60 ; 61 ; 62 ; 63 ; 81\end{array} \\
\hline 4 & \begin{array}{c}64 ; 65 ; 66 ; 67 ; 68 ; 82 ; 83 ; 84 ; 85 ; 86 ; 87 ; 88 ; 89 ; 90 ; \\
91 ; 92 ; 93 ; 94 ; 95 ; 96 ; 97 ; 98 ; 99 ; 100\end{array}
$$

\hline 5 \& 4 ; 5 ; 8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 16 ; 18 ; 19 ; 21 ; 22 ; 23 ; 24 ; 25 ; 26 ; 27 ; 28 ;

29 ; 30 ; 31 ; 69 ; 70 ; 71 ; 72 ; 73 ; 74 ; 75 ; 76 ; 77 ; 78 ; 79 ; 80\end{array}\right]\)| 6 |
| :---: |
| 6 |

We use the obtained data, divided into clusters and ordered data, to construct separate functions.

Table 3.
Data for constructing separable functions

| x_{i} | C
 laster | Clien | Deadlines
 productio
 n,
 days | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cost of
 materials,
 UAH | Main S/P,
 UAH | General
 production
 costs,
 UAH | Maintenance
 expenses and
 equipment
 operation,
 UAH | Administrativ
 e expenses,
 UAH | Selling
 expenses,
 UAH | Planned
 profit,
 UAH | Y^{*} |

To obtain the dependence of profit on other factors, we will use the method of regression analysis [2], implemented in the Microsoft Excel program, Regression application.

Equations of linear separable functions for each cluster are given in formulas (1) (5):

ECONOMY

PROBLEMS OF CREATING SCIENTIFIC IDEAS ABOUT WORLD DEVELOPMENT

$$
\begin{align*}
& Y_{1}^{*}=-149,560312939845-7,09068385470914 x_{1}+8,5569442238997 x_{2} \\
&-0,0010770767528679 x_{3}+0,0678413864889972 x_{4} \\
&+0,0350170017499101 x_{5}+0,0290135580007626 x_{6} \tag{1}\\
&+0,10742725104577 x_{7}-0,313245729560543 x_{8} ; \\
& Y_{2}^{*}=95,522815611928-1,13728709806489 x_{1}-4,69099852289208 x_{2} \\
&+0,00252519403870347 x_{3}+0,0483490570323496 x_{4} \tag{2}\\
&+0,0394352564458389 x_{5}+0,0933677749343886 x_{6} \\
&+0,00887581893848286 x_{7}-0,299740950783223 x_{8} ; \\
& Y_{3}^{*}=-47,5216834409601+23,9212438708728 x_{1}+7,86930264674164 x_{2} \\
&-0,000563503512678159 x_{3}-0,0568865746457246 x_{4} \tag{3}\\
&+0,211182540978628 x_{5}-0,219689141899767 x_{6} \\
&+ 0,0843717753182541 x_{7}-0,0823407894840514 x_{8} ; \\
& Y_{4}^{*}=-348,611420093822+77,9693909678877 x_{1}-0,713000303145708 x_{2} \\
&+ 0,000450316663141703 x_{3}+0,0287352487310771 x_{4} \tag{4}\\
&-0,173182883354813 x_{5}+0,276231977169644 x_{6} \\
&+-0,123800605570664 x_{7}-0,00307431813846626 x_{8} ; \\
& Y_{5}^{*}=1434,9329837623-94,1321883224578 x_{1}-10,2415136122854 x_{2} \\
&-0,0012592112307783 x_{3}-0,0796663582345305 x_{4} \\
&-0,122503664851109 x_{5}-0,16373275794641 x_{6} \tag{5}\\
&-0,0775190120632026 x_{7}+0,671965009657603 x_{8} ;
\end{align*}
$$

After making sure that the clusters are chosen correctly, we calculate the regression dependence of profit on 8 variable factors for each cluster separately.

The obtained regression models (6) - (10) are acceptable, because R^{2} is close to one, and the standard error is relatively small.

$$
\begin{align*}
& Y_{1}=-1950, 90052644474+x_{1}+x_{2}+0,080556382542458 x_{3} \tag{6}\\
&+0,765143334712704 x_{4}+x_{5}+x_{6}+x_{7}+x_{8} \\
& Y_{2}=-1359, 87577854601+x_{1}+x_{2}-0,0688575542775755 x_{3} \tag{7}\\
&+1,08915537890526 x_{4}+x_{5}+x_{6}+3,10825484442974 x_{7}+x_{8} ; \\
& Y_{3}=955,988217306248-42,9361820680878 x_{1}-20,3639638570665 x_{2} \\
&+0,0704084932487456 x_{3}+0,372275745834202 x_{4} \\
&+1,69497354707548 x_{5}-7,88754821059287 x_{6} \tag{8}\\
&+1,91241925216224 x_{7}+1,0518035075457 x_{8}
\end{align*}
$$

$$
\begin{align*}
& Y_{4}=-157,937254874147+34,4828931140938 x_{1}-16,89761042695 x_{2} \\
&-0,0148641008706581 x_{3}-0,402367560254512 x_{4} \\
&+1,69518315771836 x_{5}+0,812333688491075 x_{6} \tag{9}\\
&+2,90254485840924 x_{7}+1,91209077114898 x_{8} ; \\
& Y_{5}=546,895069714055-15,1727018624788 x_{1}-25,7387129775071 x_{2} \\
&+0,080208685395735 x_{3}+0,414101015798951 x_{4} \tag{10}\\
&+1,92242345974274 x_{5}-2,34029827292609 x_{6} \\
&+1,35534393016702 x_{7}-1,50539839889764 x_{8} ;
\end{align*}
$$

To obtain the dependence of profit on other factors, we will use the method of regression analysis [2], implemented in the Microsoft Excel program, Regression application. Thus, profit forecast functions for each cluster were obtained.

Now it is necessary to formulate restrictions for optimization x calculations on a computer:

1) profit tends to the maximum value

$$
Y_{i} \rightarrow \max ;
$$

2) the daily load in monetary terms must be less than the calculated average daily load from the execution of all orders (the order with the optimal production load was selected)

$$
\frac{\sum_{i=3}^{6} x_{i}}{x_{2}} \leq 2956,17 \text { грн ; }
$$

3) there is only one value in the sixth cluster, and a model cannot be created for it. Then, for such rare and large orders, we will introduce conditions: if the cost of the order is more than UAH $1,300,000$, then the profit is 10% of it:

$$
\begin{equation*}
\sum_{i=3}^{6} x_{i}>1300000 \text { грн., тоді } Y_{j}=0,1 \sum_{i=3}^{6} x_{i} \tag{11}
\end{equation*}
$$

4) all entered parameters must be greater than or equal to zero $\boldsymbol{x}_{\boldsymbol{i}} \geq \mathbf{0}$.

Thus, the mathematical model has the following form given in formula (12):
To test the performance and efficiency of the IS, let's take 10 new orders and process them with the help of the program. The characteristics of the orders are given in table. 4.

The calculation of the optimal choice of orders is performed by the simplex method [2] in two stages.

At the first stage, the order data is entered into separate functions (1) - (5), which determine the number of the class to which this order belongs.

At the second stage, the appropriate profit function is chosen and, taking into account the restrictions, the possible profit from this order is found.

ECONOMY

After calculating the possible profits for all orders in this way, those that give the highest profit in this set of orders are chosen among them.

$$
\begin{align*}
& Y_{1}=-1950,90052644474+x_{1}+x_{2}+0,080556382542458 x_{3} \\
& +0,765143334712704 x_{4}+x_{5}+x_{6}+x_{7}+x_{8} ; \\
& Y_{2}=-1359,87577854601+x_{1}+x_{2}-0,0688575542775755 x_{3} \\
& +1,08915537890526 x_{4}+x_{5}+x_{6}+3,10825484442974 x_{7}+x_{8} ; \\
& Y_{3}=955,988217306248-42,9361820680878 x_{1}-20,3639638570665 x_{2} \\
& +0,0704084932487456 x_{3}+0,372275745834202 x_{4} \\
& +1,69497354707548 x_{5}-7,88754821059287 x_{6} \\
& +1,91241925216224 x_{7}+1,0518035075457 x_{8} \text {; } \\
& Y_{4}=-157,937254874147+34,4828931140938 x_{1}-16,89761042695 x_{2} \\
& -0,0148641008706581 x_{3}-0,402367560254512 x_{4} \\
& +1,69518315771836 x_{5}+0,812333688491075 x_{6} \\
& +2,90254485840924 x_{7}+1,91209077114898 x_{8} \text {; } \tag{12}\\
& Y_{5}=546,895069714055-15,1727018624788 x_{1}-25,7387129775071 x_{2} \\
& +0,0802086853955735 x_{3}+0,414101015798951 x_{4} \\
& +1,92242345974274 x_{5}-2,34029827292609 x_{6} \\
& +1,35534393016702 x_{7}-1,50539839889764 x_{8} ; \\
& \boldsymbol{Y}_{j} \rightarrow \text { max } ; \\
& \frac{\sum_{i=3}^{6} x_{i}}{x_{2}} \leq \frac{\sum_{i=3}^{6} \sum_{j=1}^{100} x_{i j}}{\sum_{j=1}^{100} x_{2 j}} \text {; } \\
& \sum_{i=3}^{6} x_{i}>1300000 \text { грн., тоді } Y=0,1 \sum_{i=3}^{6} x_{i} \text {; } \\
& x_{i} \geq 0 \text {. }
\end{align*}
$$

The results of the calculations of the estimated profit from orders based on the integer simplex method [2], which are placed in descending order of priority, are shown in green in the table. 4.

The optimal package of orders (indicated in green) is also indicated in the table. 4.

Table 4.
Characteristics of new orders

№	Name of the order	Clien	$\left\|\begin{array}{c} \text { Deadlines } \\ \text { production, } \end{array}\right\|$ days	Cost of materials, UAH	$\left\lvert\, \begin{gathered} \text { Main S/P, } \\ \text { UAH } \end{gathered}\right.$	General production costs, UAH	Maintenance expenses and equipment operation, UAH	$\left\|\begin{array}{c} \text { Administr } \\ \text { ative } \\ \text { expenses, } \\ \text { UAH } \end{array}\right\|$	Selling expenses, UAH
1	Smoke pipe (brand G1)	1	30	12385	1905	762	191	572	381
2	Smoke pipe (brand G2)	3	30	55969	8611	3444	861	2583	1722
3	Smoke pipe (brand G3)	2	30	24693	3799	1520	380	1140	760
4	Limestone bunker	11	40	42717	6572	2629	657	1972	1314
5	Gypsum bunker	14	30	14404	2216	886	222	665	443
6	Slag hopper	6	35	53226	8189	3275	819	2457	1638
7	Iron ore bunker	4	20	131117	20172	8069	2017	6052	4034
8	Dust chute	7	15	2234	344	137	34	103	69
9	Chute 1	8	20	18843	2899	1160	290	870	580
10	Chute 2	9	30	24824	3819	1528	382	1146	764

References:

1. Pistunov I.M., Antonyuk O.P., Turchaninova I.Yu. Cluster analysis in economics: Education. manual - Dnipropetrovsk: National Mining University, 2008. 84 p.
2. Pistunov I.M. Economic cybernetics: education. manual / I.M. Pistunov; National mountain Univ. - Electron. text. data. - Second edition, corrected and supplemented. - D.: NSU, 2014. - 215 p.

Problems of creating scientific ideas about world development

Scientific publications
Proceedings of the III International Scientific and Practical Conference «Problems of creating scientific ideas about world development»,
Ottawa, Canada. 225 p.
(October 03 - 06, 2023)

UDC 01.1
ISBN - 979-8-89074-567-5
DOI - 10.46299/ISG.2023.2.3

Text Copyright © 2023 by the International Science Group (isg-konf.com).
Illustrations © 2023 by the International Science Group.
Cover design: International Science Group (isg-konf.com) ${ }^{\circ}$
Cover art: International Science Group (isg-konf.com) ${ }^{\odot}$
All rights reserved. Printed in the United States of America.
No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

The content and reliability of the articles are the responsibility of the authors. When using and borrowing materials reference to the publication is required. Collection of scientific articles published is the scientific and practical publication, which contains scientific articles of students, graduate students, Candidates and Doctors of Sciences, research workers and practitioners from Europe, Ukraine and from neighboring countries and beyond. The articles contain the study, reflecting the processes and changes in the structure of modern science. The collection of scientific articles is for students, postgraduate students, doctoral candidates, teachers, researchers, practitioners and people interested in the trends of modern science development.

The recommended citation for this publication is: Bakhtygaliyeva A. Features of architecture formation after disasters. Proceedings of the III International Scientific and Practical Conference. Ottawa, Canada. 2023. Pp. 9-15

URL: https://isg-konf.com/problems-of-creating-scientific-ideas-about-worlddevelopment/

